Abstract
AbstractThe acetalization of glycerol with acetone to yield solketal was catalyzed by Cs2.5H0.5PW12O40 (Cs2.5) supported on mesoporous silica under mild conditions. It gave a high glycerol conversion and selectivity to the targeted product even at room temperature (23 °C). We studied the use of both bulk and supported Cs2.5 as catalysts in another highly efficient glycerol acetalization reaction with paraformaldehyde, which gave much higher activity than with formaldehyde solution. For the reaction with acetone, the supported Cs2.5 showed a higher activity than the bulk material because of the high surface area of the mesoporous support. Interestingly, the supported Cs2.5 gave a lower conversion than the bulk for the reaction with paraformaldehyde. This is probably because of the high viscosity of the reaction system with the solid reagent paraformaldehyde. Overall, there is a complex relationship between catalyst, reaction conditions, which include the molar ratio of reactants and temperature, reaction mechanism and thermodynamics that affects the achieved activity and byproduct formation. A discussion about these interactions is included for each reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.