Abstract
AbstractElectroreduction of CO2 to liquid fuels such as ethanol and n‐propanol, powered by renewable electricity, offers a promising strategy for controlling the global carbon balance and addressing the need for the storage of intermittent renewable energy. In this work, we discovered that the composite composed of nitrogen‐doped graphene quantum dots (NGQ) on CuO‐derived Cu nanorods (NGQ/Cu‐nr) was an outstanding electrocatalyst for the reduction of CO2 to ethanol and n‐propanol. The Faradaic efficiency (FE) of C2+ alcohols could reach 52.4 % with a total current density of 282.1 mA cm−2. This is the highest FE for C2+ alcohols with a commercial current density to date. Control experiments and DFT studies show that the NGQ/Cu‐nr could provide dual catalytic active sites and could stabilize the CH2CHO intermediate to enhance the FE of alcohols significantly through further carbon protonation. The NGQ and Cu‐nr had excellent synergistic effects for accelerating the reduction of CO2 to alcohols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.