Abstract

AbstractThere is great need for the development of an electrochemical CO2 reduction reaction (CO2RR) process with high Faraday efficiency (FE), energy efficiency (EE), and current density for practical utilization of CO2. Here, a facile one‐pot synthesis of a catalyst is reported that is based on cobalt and poly‐4‐vinylpyridine that can perform CO2RR to CO predominantly with respect to the hydrogen evolution reaction in a nafion‐based membrane electrode assembly and can work in pH ranging from 2 to 7. Cell optimization results in CO2RR to CO with 92% FE and 58% EE at 85 mA cm−2, while showing no noticeable degradation in FE at 20 h. These characteristics are attributed to synthesis and processing conditions which promote nearly uniform coordination of pyridine moieties with Co at the nanoscale in order to produce the appropriate complex necessary for catalysis. Outstanding performance combined with the ease of production, scalability of the method, and accessibility of components pave the way toward the commercialization of an electrochemical CO2RR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.