Abstract

Materials that are capable of extracting gold from complex sources, especially electronic waste (e-waste) with high efficiency are needed for gold resource sustainability and effective e-waste recycling. However, it remains challenging to achieve high extraction capacity to trace amount of gold, and precise selectivity to gold over a wide range of complex co-existing elements. Here we report a reduced graphene oxide (rGO) material that has an ultrahigh extraction capacity for trace amounts of gold (1,850 mg/g and 1,180 mg/g to 10 ppm and 1 ppm gold). The excellent gold extraction behavior is accounted to the graphene areas and oxidized regions of rGO. The graphene areas spontaneously reduce gold ions to metallic gold, and the oxidized regions provide a good dispersibility so that efficient adsorption and reduction of gold ions by the graphene area can be realized. The rGO is also highly selective to gold ions. By controlling the protonation process of the functional groups on the oxidized regions of rGO, it shows an exclusive gold extraction without adsorption of 14 co-existing elements seen in e-waste. These discoveries are further exploited in highly efficient, continuous gold recycling from e-waste with good scalability and economic viability, as exemplified by extracting gold from e-waste using a rGO membrane based flow-through process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.