Abstract

In this work, we developed a charge control sandwich structure around QD layers for the inverted QLEDs, the performance of which is shown to exceed that of the conventional QLEDs in terms of the external quantum efficiency (EQE) and the current efficiency (CE). The QD light-emitting layer (EML) is sandwiched with two ultrathin interfacial layers: one is a poly(9-vinlycarbazole) (PVK) layer to prevent excess electrons, and the other is a polyethylenimine ethoxylated (PEIE) layer to reduce the hole injection barrier. The sandwich structure resolves the imbalance between injected holes and electrons and brings the level of balanced charge carriers to a maximum. We demonstrated the highly improved performance of 89.8 cd/A of current efficiency, 22.4% of external quantum efficiency, and 72 814 cd m-2 of maximum brightness with the solution-processed inverted QLED. This sandwich structure (PVK/QD/PEIE), as a framework, can be applied to various QLED devices for enhancing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.