Abstract

As shown in the literature, Au nanoparticles (NPs) were popularly used in the fields of catalyst and surface-enhanced Raman scattering (SERS). Meanwhile, cationic surfactants of hexadecyltrimethylammonium bromide (CTAB) were generally employed in syntheses of Au nanorods (NRs). In this work, CTAB is used to prepare highly effectively SERS-active Au substrates via electrochemical oxidation-reduction cycles (ORCs) for the first time. Based on the effectively SERS-active Au substrate prepared under assistance of CTAB, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by more than one order of magnitude, as compared with that of R6G adsorbed on a SERS-active Au substrate without the assistance of CTAB in preparation. Experimental results indicate that the quantities of adsorption sites for the developed SERS-active Au substrates are large enough to accommodate considerable ranges of analyte concentrations. The aging of SERS enhancement capability can be markedly depressed on this substrate. Moreover, its potential application in the trace detection of monosodium urate (MSU)-containing solution in gouty arthritis can be promised using this SERS-active Au substrate with CTAB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.