Abstract
The electrochemical and thermal stabilities of commonly used LiPF6/organic carbonate-based electrolytes are still a bottleneck for the development of high energy density lithium-ion batteries (LIBs) operating at elevated cell voltage and elevated temperature. The use of intrinsic electrochemically stable electrolyte solvents, e.g. sulfones or dinitriles, has been reported as one approach to enable high voltage LIBs. However, the major challenge of these solvents is related to their poor reductive stability and lack of solid electrolyte interphase (SEI)-forming ability on the graphite electrode. Here, 3-methyl-1,4,2-dioxazol-5-one (MDO) is synthesized and investigated as new highly effective SEI-forming electrolyte additive which can sufficiently suppress electrolyte reduction and graphite exfoliation in propylene carbonate (PC)-based electrolytes. With the addition of only 2 wt % MDO, LiNi0.5Mn0.3Co0.2O2 (NMC532)/graphite full cells containing a 1 M LiPF6 in PC electrolyte reach a cycle life of more than 450 cycles while still having a capacity retention of 80%. In addition, MDO has proven to be oxidatively stable until potentials as high as 5.3 V vs Li/Li+. Further development of MDO and its derivatives as electrolyte additives is a step forward to high voltage stable electrolyte formulations based on alternative electrolyte solvents and high energy density LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.