Abstract

Direct seawater electrolysis is a promising technology for massive green hydrogen production but is limited by the lack of durable and efficient electrocatalysts toward the oxygen evolution reaction (OER). Herein, we develop a core-shell nanoreactor as a high-performance OER catalyst consisting of NiFe alloys encapsulated within defective graphene layers (NiFe@DG) by a facile microwave shocking strategy. This catalyst needs overpotentials of merely 218 and 276 mV in alkalized seawater to deliver current densities of 10 and 100 mA cm-2, respectively, and operates continuously for 2000 h with negligible activity decay (1.0%), making it one of the best OER catalysts reported to date. Detailed experimental and theoretical analyses reveal that the excellent durability of NiFe@DG originates from the formation of the built-in electric field triggered by the defective graphene coating against chloride ions at the electrode/electrolyte interface, thus protecting the active NiFe alloys at the core from dissolution and aggregation under harsh operation conditions. Further, a highly stable and efficient seawater electrolyzer is assembled with the NiFe@DG anode and the Pt/C cathode to demonstrate the practicability of the catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.