Abstract

A novel Pd-Fe/α-Al2O3 catalyst was synthesized by incipient-wetness impregnation method with bayberry tannin as chelating promoter and commercial hollow column Raschig ring α-Al2O3 as support for the synthesis of diethyl oxalate from CO and ethyl nitrite. A variety of characterization techniques including N2 physical adsorption, optical microscopy, scanning electron microscopy and energy dispersive system (SEM-EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), were employed to explore the relationship between the physicochemical properties and activity of catalysts. It indicated that a large number of phenolic hydroxyl groups in bayberry tannin can efficiently anchor the active component Pd, reduce the particle size and make the active Pd as a multi-ring distribution on the commercial α-Al2O3 support, which were beneficial to improve the catalytic activity for the production of diethyl oxalate from CO and ethyl nitrite. 0.3 wt% Pd-Fe/α-Al2O3 showed excellent catalytic activity and selectivity in a continuous flow, fixed-bed reactor with the loading amount of 10 mL catalysts. Under the mild reaction conditions, the space-time yield of diethyl oxalate was 978gL−1 h−1 and CO conversion was 44% with the selectivity to diethyl oxalate of 95.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.