Abstract

Doped NaTaO3 (NaTaO3 :A, where A=Mg, Ca, Sr, Ba, or La) has arisen as a highly active photocatalyst for CO2 reduction to simultaneously form CO, H2 , and O2 using water as the electron donor when used with an Ag cocatalyst, under UV irradiation, and with 1 atm (0.1 MPa) of CO2 . The ratio of the number of reacted electrons/holes was almost unity, indicating that water was consumed as the electron donor. A liquid-phase reduction method for loading of the Ag cocatalyst was superior to photodeposition and impregnation methods. The Ag cocatalyst-loaded NaTaO3 :Ba was the most active photocatalyst in water with no required additives. The addition of bases, such as hydrogencarbonate, was effective to enhance the CO formation for Mg-, Ca-, Sr-, Ba-, and La-doped NaTaO3 photocatalysts with an Ag cocatalyst. Ca- and Sr-doped NaTaO3 photocatalysts showed especially high activity along with the Ba-doped photocatalyst in the aqueous NaHCO3 solution. The selectivity for the CO formation [CO/(CO+H2 )] on Ca-, Sr-, and Ba-doped NaTaO3 photocatalysts with Ag cocatalyst reached around 90 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.