Abstract

N, S-doped ultramicroporous carbons (NSUC-x) with a high nitrogen/sulfur content and a narrow pore-size distribution of around 0.55 nm were firstly prepared using L-cysteine as a nitrogen and sulfur source. The phase, graphitization degree, morphology, specific surface area, pore structure and surface condition of NSUC-x are investigated to analyze the key role in electrochemical performance. Such an ultramicroporous structure and N, S doping not merely provide a high-specific surface area and a suitable pore size, but also induce a good wettability for the fast transport and adsorption of electrolyte ions. Due to the above strategies, the typical NSUC-0.4 exhibits a high gravimetric capacitance of 339 F g−1 at 0.5 A g−1 as well as a capacity retention of 91.6% after 10,000 cycles in a three-electrode system using a 6 M KOH electrolyte. More attractively, a NSUC-0.4-assembled symmetrical supercapacitor delivers an energy output of 7.4 Wh kg−1 at 100 W kg−1 in 6 M KOH as well as a capacity retention of 92.4% after 10,000 cycles, indicating its practical application prospect. Our findings open up new prospects for the design and electrochemical application of N, S-doped ultramicroporous carbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.