Abstract

Single-atom catalysts (SACs) prepared by the atom trapping method often possess high stability yet have limited advantages regarding catalytic performance due to the strong metal-support interaction. Using these SACs as seeds to develop supported nanoclusters or nanoparticles has, however, been proven to be effective in improving the catalysts' intrinsic activity. Herein, we have prepared extremely stable Ir SACs supported by MgAl2O4 via atomic trapping and used them as seeds to fabricate highly active and stable Ir nanocluster catalysts by high-temperature reduction. The activity toward N2O decomposition increased by more than ten times compared with that of the parent Ir SACs. This study provides a new avenue to design and develop highly active and stable catalysts for industrial use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.