Abstract
Hydrogen evolution reaction (HER) from water through electrocatalysis using cost-effective materials to replace precious Pt catalysts holds great promise for clean energy technologies. In this work we developed a highly active and stable catalyst containing Co doped earth abundant iron pyrite FeS(2) nanosheets hybridized with carbon nanotubes (Fe(1-x)CoxS(2)/CNT hybrid catalysts) for HER in acidic solutions. The pyrite phase of Fe(1-x)CoxS(2)/CNT was characterized by powder X-ray diffraction and absorption spectroscopy. Electrochemical measurements showed a low overpotential of ∼0.12 V at 20 mA/cm(2), small Tafel slope of ∼46 mV/decade, and long-term durability over 40 h of HER operation using bulk quantities of Fe(0.9)Co(0.1)S(2)/CNT hybrid catalysts at high loadings (∼7 mg/cm(2)). Density functional theory calculation revealed that the origin of high catalytic activity stemmed from a large reduction of the kinetic energy barrier of H atom adsorption on FeS(2) surface upon Co doping in the iron pyrite structure. It is also found that the high HER catalytic activity of Fe(0.9)Co(0.1)S(2) hinges on the hybridization with CNTs to impart strong heteroatomic interactions between CNT and Fe(0.9)Co(0.1)S(2). This work produces the most active HER catalyst based on iron pyrite, suggesting a scalable, low cost, and highly efficient catalyst for hydrogen generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.