Abstract

Highly absorbent polymers have a wide range of applications in biomaterials, agriculture, physiological products of daily uses, and others. Silk fibroin, as a natural biomaterial with excellent biocompatibility and tunable mechanical properties, shows good prospects in the field of biomedicine applications. However, the dried fibroin hydrogel has very low absorbency. In this work, silk fibroin protein is used as the carrier, riboflavin as the photosensitizer, and accordingly, the hydrogel is prepared by free radical cross-linking under ultraviolet light. The fibroin in the hydrogel contains mainly the random coil structure. The covalent bond cross-linking hinders the crystallization of the silk fibroin, thereby an amorphous silk fibroin hydrogel is obtained. After drying, this xerogel can absorb water 90 times more than its own mass and assimilates a good amount of water within a minute. In vitro and in vivo rabbit ear hemostasis experiments show that this fabricated xerogel has good hemostatic properties. Therefore, this xerogel exhibits good promise for rapid hemostasis of wounds and absorbing other body exudates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.