Abstract

Stream processing applications have seen an increasing demand with the increased availability of sensors, IoT devices, and user data. Modern systems can generate millions of data items per day that require to be processed timely. To deal with this demand, application programmers must consider parallelism to exploit the maximum performance of the underlying hardware resources. However, parallel programming is often difficult and error-prone, because programmers must deal with low-level system and architecture details. In this work, we introduce a new strategy for automatic data-parallel code generation in C++ targeting multi-core architectures. This strategy was integrated with an annotation-based parallel programming abstraction named SPar. We have increased SPar’s expressiveness for supporting stream and data parallelism, and their arbitrary composition. Therefore, we added two new attributes to its language and improved the compiler parallel code generation. We conducted a set of experiments on different stream and data-parallel applications to assess the efficiency of our solution. The results showed that the new SPar version obtained similar performance with respect to handwritten parallelizations. Moreover, the new SPar version is able to achieve up to 74.9x better performance with respect to the original ones due to this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.