Abstract

Torsional oscillations are variations of the solar differential rotation that are strongly linked to the magnetic cycle of the Sun. Helioseismic inversions have revealed significant differences in the high-latitude branch of torsional oscillations between cycle 23 and cycle 24. Here we employ a non-kinematic flux-transport dynamo model that has been used previously to study torsional oscillations and simulate the response of the high-latitude branch to a change in the amplitude of the magnetic cycle. It is found that a reduction of the cycle amplitude leads to an increase in the amplitude of differential rotation that is mostly visible as a drop in the high-latitude rotation rate. Depending on the amplitude of this adjustment the high-latitude torsional oscillation signal can become temporarily hidden due to the unknown changing mean rotation rate that is required to properly define the torsional oscillation signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.