Abstract

Amorphous indium gallium zinc oxide (a-IGZO) thin films of the highest transmittance reported in literature were initially deposited onto flexible polymer substrates at room temperature. The films were annealed in vacuum, air, and oxygen to enhance their electrical and optical performances. Electrical and optical characterizations were done before and after anneals. A partial reversal of the degradation in electrical properties upon annealing in oxygen was achieved by subjecting the films to subsequent vacuum anneals. A model was developed based on film texture and structural defects which showed close agreement between the measured and calculated carrier mobility values at low carrier concentrations (2–6 × 1019 cm−3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.