Abstract

Starting from a two-scale description involving receptor binding dynamics and a kinetic transport equation for the evolution of the cell density function under velocity reorientations, we deduce macroscopic models for glioma invasion featuring partial differential equations for the mass density and momentum of a population of glioma cells migrating through the anisotropic brain tissue. The proposed first and higher-order moment closure methods enable numerical simulations of the kinetic equation. Their performance is then compared to that of the diffusion limit. The approach allows for diffusion tensor imaging (DTI)-based, patient-specific predictions of the tumor extent and its dynamic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.