Abstract
The one-loop anomalies for chiral W 3 gravity are derived using the Fujikawa regularisation method. The expected two-loop anomalies are then obtained by imposing the Wess-Zumino consistency conditions on the one-loop results. The anomalies found in this way agree with those already known from explicit Feynman diagram calculations. We then directly verify that the order ℏ 2 non-local BRST Ward identity anomalies, arising from the “dressing” of the one-loop results, satisfy Lam's theorem. It is also shown that in a rigorous calculation of Q 2 anomaly for the BRST charge, one recovers both the non-local as well as the local anomalies. We further verify that, in chiral gravities, the non-local anomalies in the BRST Ward identity can be obtained by the application of the anomalous operator Q 2, calculated using operator products, to an appropriately defined gauge fermion. Finally, we give arguments to show why this relation should hold generally in reparametrisation-invariant theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.