Abstract
Electron occupation in the lowest quantized state of the conduction band (1Se) in the colloidal quantum dot leads to the intraband transition in steady-state (1Se-1Pe). The intraband transition, solely originating from the quantum confinement effect, is the unique property of semiconducting nanocrystals. To achieve the electron occupation in 1Se state in the absence of impurity ions, nonthiol ligand passivated HgS colloidal quantum dots are synthesized. The nonthiol ligand passivated HgS quantum dot exhibits strong steady-state intraband transition in ambient condition and enables a versatile ligand replacement to oxide, acid, and halide functional ligands, which was not achievable from conventional HgS or HgSe quantum dots. Surprisingly, the atomic ligand passivation to HgS colloidal quantum dot solution efficiently maintains the electron occupation at 1Se of HgS CQDs in ambient condition. The electron occupation in 1Se of HgS CQD solid film is controlled by surface treatment with charged ions, which is ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.