Abstract

SUMMARYHigher-order derivatives of kinematic mappings give insight into the motion characteristics of complex mechanisms. Screw theory and its associated Lie group theory have been used to find these derivatives of loop closure equations up to an arbitrary order. In this paper, this is extended to the higher-order derivatives of the solution to these loop closure equations to provide an approximation of the finite motion of serial and parallel mechanisms. This recursive algorithm, consisting solely of matrix operations, relies on a simplified representation of the higher-order derivatives of open chains. The method is applied to a serial, a multi-DOF parallel, and an overconstrained mechanism. In all cases, adequate approximation is obtained over a large portion of the workspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.