Abstract

This paper presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional multi-domains. Building up on the recent single-domain ADI-based high-order Navier-Stokes solvers (Bruno and Cubillos (2016) [11]) this article presents multi-domain implicit-explicit methods of high-order of temporal accuracy. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of high-order backward differentiation formulae (BDF) and an alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Nearly dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. As demonstrated via a variety of numerical experiments in two and three dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, robust stability properties, limited dispersion, and high parallel efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.