Abstract

Generalization is a fundamental operation of inductive inference. While first order syntactic generalization (antidunification) is well understood, its various extensions are often needed in applications. This paper discusses syntactic higher order generalization in a higher order language λ2 l1r. Based on the application ordering, we prove that least general generalization exists for any two terms and is unique up to renaming. An algorithm to compute the least general generalization is also presented. To illustrate its usefulness, we propose a program verification system based on higher order generalization that can reuse the proofs of similar programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.