Abstract

Our main results are quantitative bounds in the multivariate normal approximation of centred subgraph counts in random graphs generated by a general graphon and independent vertex labels. We are interested in these statistics because they are key to understanding fluctuations of regular subgraph counts — a cornerstone of dense graph limit theory. We also identify the resulting limiting Gaussian stochastic measures by means of the theory of generalised U-statistics and Gaussian Hilbert spaces, which we think is a suitable framework to describe and understand higher-order fluctuations in dense random graph models. With this article, we believe we answer the question “What is the central limit theorem of dense graph limit theory?”. We complement the theory with some statistical applications to illustrate the use of centred subgraph counts in network modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.