Abstract

We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L 1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of k th-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n + kc), where c is the complexity of the transportation network. This is quite different from the bound O(k(n − k)) in the Euclidean metric [12]. For the special case where k = n − 1 the complexity in the Euclidean metric is O(n), while that in the city metric is Θ(nc). Furthermore, we develop an O(k 2(n + c)log(n + c))-time iterative algorithm to compute the k th-order city Voronoi diagram and an O(nclog2(n + c)logn)-time divide-and-conquer algorithm to compute the farthest-site city Voronoi diagram.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.