Abstract

A thin-walled beam finite element with a varying quadrilateral cross section is formulated based on a higher order beam theory. For the calculation of distortions, the beam frame approach, which models the cross section by using two-dimensional Euler beams, is used. Distortions induced by the Poisson’s effect and warpings are analytically derived. Three-dimensional displacements at an arbitrary point of a present beam element can be described by interpolating three-dimensional displacements at the end sections. Straight and curved thin-walled beams with varying cross sections are solved to show the validity of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.