Abstract
For a compact Hausdorff space $X$, $C(X)$ denotes the ring of all complex-valued continuous functions on $X$. We say that $C(X)$ is \textit{algebraically closed} if every monic algebraic equation with $C(X)$-coefficients has a root in $C(X)$. Modifying the construction of [2], we show that, for each $m = 1,2, \cdots, \infty$, there exists an $m$-dimensional compact Hausdorff space $X(m)$ such that $C(X(m))$ is algebraically closed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.