Abstract
Multi-messenger data suggest that radio galaxies (ie non-blazar active galaxies) are a well-motivated class of sources for the diffuse flux of high-energy neutrinos reported by the IceCube Collaboration. In this study, we consider the gamma-ray spectrum observed from four nearby radio galaxies (Centaurus A, PKS 0625-35, NGC 1275 and IC 310) and constrain the intensity and spectral shape of the emission injected from these sources, accounting for the effects of attenuation and contributions from electromagnetic cascades (initiated both within the radio galaxy itself and during extragalactic propagation). Assuming that this gamma-ray emission is generated primarily through the interactions of cosmic-ray protons with gas, we calculate the neutrino flux predicted from each of these sources. Although this scenario is consistent with the constraints published by the IceCube and ANTARES Collaborations, the predicted fluxes consistently fall within an order of magnitude of the current point source sensitivity. The prospects appear very encouraging for the future detection of neutrino emission from the nearest radio galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.