Abstract

Allografts have gained increasing popularity in anterior cruciate ligament (ACL) reconstruction. However, one of the major concerns regarding allografts is the possibility of disease transmission. Electron beam (Ebeam) and Gamma radiation have been proven to be successful in sterilization of medical products. In soft tissue sterilization high dosages of gamma irradiation have been shown to be detrimental to biomechanical properties of grafts. Therefore, it was the objective of this study to compare the biomechanical properties of human bone-patellar tendon-bone (BPTB) grafts after ebeam with standard gamma irradiation at medium (25 kGy) and high doses (34 kGy). We hypothesized that the biomechanical properties of Ebeam irradiated grafts would be superior to gamma irradiated grafts. Paired 10 mm-wide human BPTB grafts were harvested from 20 donors split into four groups following irradiation with either gamma or Ebeam (each n = 10): (A) Ebeam 25 kGy, (B) Gamma 25 kGy, (C) Ebeam 34 kGy (D) Gamma 34 kGy and ten non-irradiated BPTB grafts were used as controls. All grafts underwent biomechanical testing which included preconditioning (ten cycles, 0-20 N); cyclic loading (200 cycles, 20-200 N) and a load-to-failure (LTF) test. Stiffness of non-irradiated controls (199.6 ± 59.1 N/mm) and Ebeam sterilized grafts did not significantly differ (152.0 ± 37.0 N/mm; 192.8 ± 58.0 N/mm), while Gamma-irradiated grafts had significantly lower stiffness than controls at both irradiation dosages (25 kGy: 126.1 ± 45.4 N/mm; 34 kGy: 170.6 ± 58.2 N/mm) (p < 0.05). Failure loads at 25 kGy were significantly lower in the gamma group (1,009 ± 400 N), while the failure load was significantly lower in both study groups at high dose irradiation with 34 kGy (Ebeam: 1,139 ± 445 N, Gamma: 1,073 ± 617 N) compared to controls (1,741 ± 304 N) (p < 0.05). Creep was significantly larger in the gamma irradiated groups (25 kGy: 0.96 ± 1.34 mm; 34 kGy: 1.06 ± 0.58 mm) than in the Ebeam (25 kGy: 0.50 ± 0.34 mm; 34 kGy: 0.26 ± 0.24 mm) and control (0.20 ± 0.18 mm) group that did not differ significantly. Strain difference was not different between either control or study groups (controls: 1.0 ± 0.03; Ebeam 34 kGy 1.04 ± 0.018; Gamma 34 kGy 1.0 ± 0.028; 25 kGy: 1.4 ± 2,0; 34 kGy: 1.1 ± 1.1). The most important result of this study was that ebeam irradiation showed significantly less impairment of the biomechanical properties than gamma irradiation. Considering the results of this study and the improved control of irradiation application with electronic beam, this technique might be a promising alternative in soft-tissue sterilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.