Abstract

The primary structures of the hemoglobin components Hb A and Hb D of White-Headed Vulture (Trigonoceps occipitalis) are presented. The globin chains were separated on CM-Cellulose in 8M urea buffer, the components by FPLC in phosphate buffers. The amino-acid sequences were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid phase and gas-phase sequenators. The sequences differ from those of European Black Vulture by only one mutation in the alpha A-chains (alpha 137). The alpha D-chains and the beta-chains are identical. This means that for the first time identical minor components in birds have been found. An updated list of identical globin chains is presented. Hb D exhibited a higher oxygen affinity than Hb A. At pH 7.5 and 38 degrees C P50 values of 0.80 and 0.64 kPa (6.0 and 4.8 mm Hg), respectively. Both hemoglobins showed similar Bohr factors displayed a pronounced sensitivity to inositol hexakis(phosphate), which increased P50 values of Hbs A and D to 4.0 and 3.6 kPa (30 and 26 mm Hg), respectively. The molecular and physiological significance of the findings is discussed with special reference to oxygen transport by hemoglobin at high altitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.