Abstract

Poly(vinylidene fluoride) (PVDF)-electrosprayed nanofibers have been the subject of much research due to their flexibility and piezoelectric properties compared to other piezoelectrics, for example, ceramics or other polymeric materials. The piezoelectric performance of PVDF is mainly related to the presence of β-phase. This study aims to determine the influence of working and formulation parameters on the generation of β-phase, morphology, and crystal structure of PVDF nanofibers. In addition, this research innovatively analyzes the effect of the dispersion state of PVDF molecular chains in the solvent on the electrospinning results. The morphology and crystal structure of PVDF nanofibers were determined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Beadless nanofibers are obtained when the PVDF concentration reaches the semi-diluted regime entangled in dimethylformamide (DMF) or DMF/acetone solution. The optimization of the process parameters (static collector, tip to collector distance—25 cm, flow rate—1 mL/h, applied voltage—20 kV) allows the increase in the β-phase fraction from 68.3% ± 1.2% to 94.5% ± 0.6% for a PVDF concentration of 25 w/v% in a DMF/acetone mixture (2/3 v/v). With these same parameters applied to a rotating collector, it was observed that the piezoelectric performance is at maximum for a maximum β-phase fraction of 90.6% ± 1.1%, obtained for a rotational speed of 200 rpm. The effect of orientation of PVDF nanofibers on piezoelectric properties was quantitatively discussed for the first time; the piezoelectric properties are independent of the alignment of the nanofibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.