Abstract

Bordetella pertussis produces a calmodulin-stimulated adenylyl cyclase that invades animal cells and raises intracellular cAMP levels [Confer, D. L., & Eaton, J. W. (1982) Science 217, 948-950; Shattuck, R. L., & Storm, D. R. (1985) Biochemistry 24, 6323-6328]. The mechanism for invasion of animal cells by this enzyme has not been defined, but there is considerable evidence that it does not enter by receptor-mediated endocytosis [Gordon, V. M., Leppla, S. H., & Hewlett, E. L. (1988) Infect. Immun. 56, 1066-1069; Donovan, M. G., & Storm, D. R. (1990) J. Cell. Physiol. 145, 444-449]. In this study, the importance of high-affinity calmodulin (CaM) binding for entry of the enzyme into neuroblastoma cells was evaluated using a mutant enzyme that has significantly lower affinity for calmodulin than the wild-type enzyme. Oligonucleotide-directed site-specific mutagenesis was used to create a point mutant at a critical tryptophan residue (Trp-242) within the proposed CaM binding domain of the B. pertussis adenylyl cyclase. Substitution of Trp-242 with Glu lowered the apparent affinity of the enzyme for calmodulin by 250-fold; however, the maximal enzyme activity in the presence of saturating calmodulin was equivalent to the wild-type enzyme. The Glu-242 mutant adenylyl cyclase was returned to B. pertussis by homologous recombination, and the enzyme produced by this strain was examined for invasion of neuroblastoma cells. Although the mutant enzyme stimulated the production of intracellular cAMP in neuroblastoma cells, the rate of cAMP accumulation was at least 10-fold lower than that caused by the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.