Abstract

Water proton nuclear magnetic resonance (NMR) relaxation rates were used to identify metal sites on protein kinase C (PKC) isozymes alpha and beta using paramagnetic Gd3+ as a probe. The paramagnetic effect of Gd3+ on water proton relaxation was enhanced with PKC isozymes alpha and beta in the presence of diheptanoylphosphatidylcholine/1,2-dioleoyl-sn-glycerol (PC7/DO). The data are consistent with a single class of metal-binding sites on PKC beta and two classes of sites on PKC alpha: a single high-affinity site with a KD for Gd3+ of 0.2 microM and a larger class of sites with a lower affinity for Gd3+. Titration with Ca2+ abolished the observed enhancement of water proton relaxation by the PKC alpha.Gd3+ complex, consistent with displacement of Gd3+ by Ca2+. Titrations of the PKC alpha.Gd3+ complex with Co(NH3)4ATP, a substitution-inert analogue of ATP, caused a substantial decrease in the observed water proton relaxation enhancement, consistent with formation of a ternary enzyme.metal.substrate complex with a KPKC alpha.Gd.[CoATP] of 30-100 nM. Titration of the metal enzyme complex with a model peptide substrate derived from the pseudosubstrate sequence of PKC alpha caused a similar decrease in enhancement at stoichiometric concentrations consistent with the formation of a PKC alpha.Gd3+.peptide complex with a KPKC alpha.Gd.[peptide] of less than or equal to 13 nM. Titrations of the fully formed PKC alpha.Gd3+.peptide complex with Co(NH3)4ATP caused a further decrease in enhancement consistent with formation of a quaternary complex.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.