Abstract

An improved indirect scheme for laser positron generation is proposed. The positron yields in high-Z metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.