Abstract

A switchable lateral resistance effect with high reverse voltage has been observed in nanoscale copper groove structure. With the stimulation of electric pulse and local illumination of laser, the lateral resistance of the structure can be modulated in a non-volatile manner. We attribute this phenomenon to the different width of depletion region and the Schottky barrier change caused by the nanoscale charge trapping effect. This work may inspire a new approach of resistance modulation and help the development of laser-assisted electric pulse merged devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.