Abstract

ABSTRACTSoil stiffness estimates are critical to geologic hazard and risk assessment in urban centers. Multichannel analysis of surface-wave (MASW) data collection along city streets is now a standard, cost-effective, and noninvasive soil stiffness approximation tool. With this approach, shear-wave velocities (VS) are derived from Rayleigh-wave signals. Although the current MASW practice is to neglect the effect of a high-velocity road layer on soil VS estimates, our models show measurable impacts on Rayleigh-wave amplitudes and phase velocities when seismic data are acquired on a road surface. Here, we compare synthetic models with field MASW and downhole VS measurements. Our modeling indicates that a road layer attenuates Rayleigh-wave signals across all frequencies, introduces coherent higher-mode signals, and leads to overestimated VS and VS30 values. We show that VS30 can be overestimated by more than 7% when soft soils underlie a rigid road surface. Inaccurate VS estimates can lead to improper soil classification and bias earthquake site-response estimates. For road-based MASW data analysis, we recommend incorporating a surface road layer in the Rayleigh-wave inversion to improve VS estimate accuracy with depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.