Abstract
Alloys of platinum with alkaline earth metals promise to be active and highly stable for fuel cell applications, yet their synthesis in nanoparticles remains a challenge due to their high negative reduction potentials. Herein, we report a strategy that overcomes this challenge by preparing platinum-magnesium (PtMg) alloy nanoparticles in the solution phase. The PtMg nanoparticles exhibit a distinctive structure with a structurally ordered intermetallic core and a Pt-rich shell. The PtMg/C as a cathode catalyst in a hydrogen-oxygen fuel cell exhibits a mass activity of 0.50 A mgPt−1 at 0.9 V with a marginal decrease to 0.48 A mgPt−1 after 30,000 cycles, exceeding the US Department of Energy 2025 beginning-of-life and end-of-life mass activity targets, respectively. Theoretical studies show that the activity stems from a combination of ligand and strain effects between the intermetallic core and the Pt-rich shell, while the stability originates from the high vacancy formation energy of Mg in the alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.