Abstract
High utility itemsets mining has become a hot research topic in association rules mining. But many algorithms directly mine datasets, and there is a problem on dense datasets, that is, too many itemsets stored in each transaction. In the process of mining association rules, it takes a lot of storage space and affects the running efficiency of the algorithm. In the existing algorithms, there is a lack of efficient itemset mining algorithms for dense datasets. Aiming at this problem, a high utility itemsets mining algorithm based on divide-and-conquer strategy is proposed. Using the improved silhouette coefficient to select the best K-means cluster number, the datasets are divided into many smaller subclasses. Then, the association rules mining is performed by Boolean matrix compression operation on each subclass, and iteratively merge them to get the final mining results. We also analyze the time complexity of our method and Apriori algorithm. Finally, experimental results on several well-known real world datasets are conducted to show that the improved algorithm performs faster and consumes less memory on dense datasets, which can effectively improve the computational efficiency of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.