Abstract

Background Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites.Methodology/Principal FindingsIn order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major.Conclusions/SignificanceThe pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite enzyme and represent compounds for future hit-to-lead synthesis programs to develop therapeutics against Leishmania species. Challenges remain in identifying specific CDK inhibitors with both target selectivity and potency against the parasite.

Highlights

  • The leishmaniases are a group of diseases caused by Leishmania, parasitic protozoa belonging to the family Trypanosomatidae

  • Two compound chemical libraries were screened against Cdc2-related kinase 3 (CRK3):CYC6 and counter screened against a human cyclin-dependent kinase complex CDK2:CycA

  • Structure activity relationship (SAR) analysis of the hits identified the chemical groups attached to the azapurine scaffold that are essential for the inhibition of CRK3:CYC6 protein kinase activity

Read more

Summary

Introduction

The leishmaniases are a group of diseases caused by Leishmania, parasitic protozoa belonging to the family Trypanosomatidae. There are over 20 known species and sub species of Leishmania prevalent in 88 countries worldwide. These can be grouped into old world (Africa, Asia and Europe) and new world (the Americas) species according to their geographic distribution. Several clinical forms of the disease occur; localised cutaneous, diffuse cutaneous, mucocutaneous, and visceral leishmaniasis. Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. We describe the biological activity of the molecules against Leishmania parasites

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.