Abstract

Pharmacokinetic and metabolic screening plays an important role in the optimization of a lead compound in drug discovery. Since those screening methods are time-consuming and labor intensive, in silico models would be effective to select compounds and guide derivatization prior to the screening. We investigated in silico models for permeability in Caco-2 cells, brain distribution and cytochrome P450 (CYP) inhibition using molecular weight, lipophilicity (clog D(7.4)), polar surface area (PSA), and number of rotatable bonds (RB). A variety of test compounds was selected from different Caco-2 assay projects. The permeability determined exhibited a good correlation with a combination of PSA and clog D(7.4) rather than with PSA alone. In the brain distribution, PSA, in addition to lipophilicity, was one of the determinant parameters, and compounds were significantly distributed to the brain in rats with the decrease in the PSA value. When this approach was adapted to CYP1A2 inhibition in the fluorometric assay, the inhibitory potential for two plane core structures was successfully predicted by utilizing number of RB, PSA, and clog D(7.4). In particular, an increase in the number of RB weakened the inhibitory potential due to a loss of the plane structures. These results suggest that the PSA and RB are key parameters to design chemical structures in terms of the improvement of both membrane permeability in the brain and gastrointestine and CYP1A2 inhibition, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.