Abstract

Populations of cells create local environments that lead to emergent heterogeneity. This is particularly evident in human pluripotent stem cells (hPSCs) where microenvironmental heterogeneity limits cell fate control. We have developed a high-throughput platform to screen hPSCs in configurable micro-environments, enabling the optimization of colony size, cell density, and additional parameters for rapid and robust cell fate responses. Single-cell protein expression profiling revealed that Oct4 and Sox2 co-staining discriminate pluripotent, neuroectoderm, primitive streak, and extraembryonic cell fates, allowing dose responses of 27 developmental factors to simultaneously delineate lineage-specific concentration optima. This platform also enabled quantification of endogenous signaling pathway activation and differentiation bias (fingerprinting). Short-term (48 h) fingerprinting is predictive of definitive endoderm induction efficiency across 12 cell lines and was used a priori to rescue long-term (>18 day) differentiation of a cell line reticent to cardiac induction. These findings facilitate high-throughput hPSC-based screening and quantification of lineage induction bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.