Abstract

High-throughput and combinatorial approaches have been applied to the discovery of catalysts for selective low temperature CO oxidation/VOC removal using mixed CO/propylene feeds, and for the water–gas shift (WGS) reaction using real post-reformer feeds containing CO, CO2, H2O and H2. The screening approach was based on a hierarchy of qualitative and semi-quantitative primary screens for the discovery of hits, and quantitative secondary screens for hit confirmation, lead optimization and scale-up. For WGS, primary screening was carried out using scanning mass spectrometry. For CO oxidation and VOC removal, parallel IR thermography was the primary screen. Multi-channel fixed bed reactors equipped with imaging reflection FTIR spectroscopy or GC were used for secondary screening. Novel RuCoCe compositions were discovered and optimized for CO oxidation/VOC removal and the effect of doping was investigated for supported and bulk mixed oxide catalysts. For WGS, noble metal-free and Pt-doped CoFeRu mixed oxides as well as Pt on CeO2 and Pt on CeO2/ZrO2 were investigated and a new synergistic PtFeCe ternary composition was discovered. In these cases oxygen vacancies in the ceria lattice are believed to play a key role in the strong and synergistic Pt–Ce interaction. Alkaline metal doping was found to enhance the selectivity towards WGS by suppressing the unselective methanation side reaction and to increase the low temperature catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.