Abstract

The microfluidic hydrodynamic flow-focusing is a simple technique for nanoscale liposome formation that provides several advantages compared to the traditional manufacturing techniques. This work aimed to perform a systematic study of the liposome formation using planar microfluidic devices with different channel aspect-ratios, as an alternative to enhance the throughput of liposome synthesis. In general, liposomes with a low polydispersity and a precise control of the size were successfully produced from alteration of the flow rate ratio and channel aspect-ratio. The higher aspect-ratio enabled the most rapid generation of liposomes with similar diameter and significant lower polydispersity index than the obtained by other batch technique. Besides, β-carotene was successfully incorporated into liposomes with efficiency of approximately 60% and the incorporation ability was not specific to a choice of microfluidic device aspect-ratio. The results suggest that the use of microfluidic devices could be employed for liposome production with a possible advantage to minimize the degree of parallelization of processes. These results demonstrate the potential technical feasibility of microfluidic processes for future industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.