Abstract
With the miniaturization and integration of electronic devices heat conduction becomes a serious problem. Graphene films catch research's attention because of its excellent thermal performance and graphene oxide (GO) has been used as the most common precursor to prepare graphene films. But mostly film fabricated from GO is thinner than 30 μm and much thicker films are required to meet certain requirements. Also taking GO as raw material has many disadvantages such as the introduction of massive concentrated sulfuric acid and metal ions, huge weight loss in heat treatment and so on. Herein, we propose a new strategy to prepare graphene nanosheet films (GNFs) with a thickness of 100 μm by vacuum filtration of expand graphite through weak oxidation (WEG). Unlike common strategy, WEG without any metal ions introduced instead of GO is chosen as our raw material. The addition of nonionic surfactant and the employment of microfluidization can stabilize WEG dispersion. After graphitization at 2800 °C WEGF is transferred to GNF. The obtained 100 μm-thick film possesses a decent in-plane thermal conductivity (TC) of 760 W/mk and electrical conductivity (EC) of 5.2×10 5 S/m. Thick films with high TC can guarantee passing more heat flux and fill in larger gaps inside devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.