Abstract

Ablation of composites based on phenol-formaldehyde resin, silica fabric, and hollow corundum microspheres was investigated. Addition of corundum microspheres reduced the thermal conductivity of the composite. As a result, the temperature at the exposure site increased, which increased (by 2.7 times) the linear rate of erosion and decreased (by 2.3 times) the length of the composite coking front. Ablation caused high-temperature mechanical and chemical erosion that led to several sequential and parallel chemical reactions that increased the composite porosity and formed high-temperature reaction products, mainly silicon carbide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.