Abstract

Lanthanum hafnate La2Hf2O7 was produced chemically by inverse precipitation from ammonia solution and a mixture of La and Hf nitrates, followed by hydroxide decomposition at 1250°C in air and melting of the oxide mixture in a solar furnace. The formation of La2Hf2O7 was ascertained by X-ray diffraction. The La2Hf2O7 enthalpy increment was measured in the range 490–2120 K (for the first time in the temperature ranges 490–988 K and 1740–2120 K) by drop calorimetry using a Setaram HT-1500 high-temperature differential calorimeter and a high-temperature calorimetric device. A fitted equation for the enthalpy increment was used to calculate the main thermodynamic functions (heat capacity, entropy, and Gibbs energy) in the temperature range 298–2120 K. The experimental results are compared with the published data and those assessed using the Neumann–Kopp rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.