Abstract

The hot deformation behavior of Ti−6Al−4V alloy with an equiaxed microstructure was investigated by means of Artificial Neural Networks (ANN). The flow stress data for the ANN model training was obtained from compression tests performed on a thermo-mechanical simulator over a wide range of temperature (from 700°C to 1100°C) with strain rates of 0.0001 s−1 to 100 s−1 and true strains of 0.1 to 0.6. It was found that the trained neural network could reliably predict flow stress for unseen data. Workability was evaluated by means of processing maps with respect to strain, strain rate, and temperature. Processing maps were constructed at different strains by utilizing the flow stress predicted by the model at finer intervals of strain rates and temperatures. The specimen failures at various instances were predicted and confirmed by experiments. The results establish that artificial neural networks can be effectively used for generating a more reliable processing map for industrial applications. A graphical user interface was designed for ease of use of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.