Abstract
High-temperature co-electrolysis of carbon dioxide and steam is a promising method to produce ‘white’ syngas by making use of renewable energy and carbon dioxide as sustainable feedstock. The technological key advantage is the possibility to tailor syngas compositions over a broad range. This paper presents a systematic investigation of the syngas tailoring process by establishing relationships between feed gas compositions and flow rates to the syngas ratio. A linear dependence between the H2O:CO2 ratio in the feed gas and the H2:CO ratio in the output gas was observed. Furthermore, the syngas ratio remains mostly invariant upon variations in electrochemical potential and fluctuating gas utilizations/flow rates during operation of a co-electrolysis cell. Most importantly, the co-electrolysis performance was demonstrated to operate at high current densities of up to 3.2 A·cm−2 over a broad range of feed gas compositions with faradaic efficiencies of nearly 100%. The possibility to operate co-electrolysis under transient load conditions renders this method particularly suitable in future scenarios of intermittent availability of renewables. The results described here illustrate the versatility of co-electrolysis, which can produce all relevant syngas compositions in a single-step process at constantly high performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.