Abstract

It is shown that above the temperature of maximum abundance, recombination rates into the excited states of He-like ions that are calculated using earlier, more approximate methods differ markedly from rates obtained from recent distorted-wave and R-matrix calculations (unified recombination rate coefficients) for Ca, Fe and Ni. The present rates lead to G ratios that are greatly lower than those resulting from the more approximate rates in previous works, by up to a factor of 6 at high electron temperatures. Excellent agreement between the distorted-wave and the R-matrix rates, as well as excellent agreement in the G ratios calculated from them, provides support for the accuracy of these new values which have a broad applicability to the modelling and interpreting of X-ray spectra from a variety of astrophysical and laboratory sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.