Abstract

The 'atypicality' of the antipsychotic drug, amisulpride, has been attributed to preferential extrastriatal binding. Previous investigations of striatal D2 receptor occupancy by amisulpride revealed conflicting results. The aim of this PET study was to measure the striatal occupancy by amisulpride and to correlate it with the corresponding drug plasma concentrations. Nine amisulpride-treated patients and 12 healthy volunteers serving as controls were studied with PET and [18F]desmethoxyfallypride. Occupancy values and plasma concentrations were nonlinearly fitted to an E max model. Results showed 43-85% (putamen) and 67-90% (caudate) D2-like receptor occupancy. Plasma amisulpride concentrations at the time of tracer injection, but not administered doses, were significantly nonlinearly correlated to occupancy levels (putamen: rS=0.88, p=0.0017; caudate: r S=0.78, p=0.0127). Calculated Emax was similar in both caudate and putamen, but occupancy levels were lower in caudate at lower amisulpride plasma concentrations. Calculated plasma levels to attain 60-80% receptor occupancy ranged from 119 to 474 ng/ml (caudate) and from 241 to 732 ng/ml (putamen). This reveals a broad range of plasma concentrations producing less than 80% striatal receptor occupancy. However, our data show high striatal D2-like receptor occupancies under rising plasma concentrations. Using the full range of recommended amisulpride dosage, striatal occupancies up to 90% can be measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.